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Abstract: Complex dynamical reaction networks consisting of many molecular species are
difficult to understand, especially, when new species may appear and present
species may vanish completely. This chapter outlines a technique to deal with
such systems. The first part introduces the concept of a chemical organisation as
a closed and self-maintaining set of molecular species. This concept allows to
map a complex (reaction) network to its set of organisations, providing a new
view on the system’s structure. The second part connects dynamics with the set
of organisations, which allows to map a movement of the system in state space
to a movement in the set of organisations. The relevancy of this approach is
underlined by a theorem that says that given a differential equation describing the
chemical dynamics of the network, then every stationary state is an instance of an
organisation. Finally, the relation between pathways and chemical organisations is
sketched

Keywords: reaction networks, constraint based network analysis, hierarchical decomposition,
constructive dynamical systems

1. INTRODUCTION

The rapidly increasing size and complexity of reaction system models requires
novel mathematical and computational techniques in order to cope with their
complexity.9 This chapter describes a technique that allows to identify for a given
reaction network important sub-structures, called chemical organisations.10, 38 These
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organisations allow to explain the (potential) behaviour of the reaction system from
a global and more abstract perspective.

The theory aims at those systems where different combinations of molecular
species (compounds) are present at different points in time. These systems are
characterised by the fact that they are changing not only quantitatively, that is, by a
change in the concentration of a molecular species, but also qualitatively when new
molecular species appear or a present species completely vanish. Fontana and Buss20

called systems that display the production of novelty constructive (dynamical)
systems.

Classical approaches describe the dynamics of a reaction system as a “quanti-
tative” movement in a fixed state space,22 where a state is usually described by a
concentration vector.16 Here, we will operate on a higher level of abstraction and
consider qualitative movements from a set of molecular species to another set of
molecular species. We can interprete this qualitative change as a movement that
goes from state space to state space, as new molecular species appear and old
species disappear.

The lack of a theory for such constructive dynamical systems has been presented,
identified, and discussed in detail by Fontana and Buss20 in the context of a theory
for biological organisation. As a partial solution, they suggest the important concept
of a (biological) organisation as a set of molecules that are algebraically closed and
dynamically self-maintaining.

Closure means that no new molecular species can be generated by reactions
among molecules inside the organisation (Section 3.1). As such no novelty can
spontaneously appear. Note that closure, as a property of a set of molecules, should
not be confused with the thermodynamical closure of a system, which are two
different and separated concepts.

Self-maintaining roughly means that every consumed molecule of the organisa-
tion has a way to be generated within the organisation such that it does not disappear
from the system (Section 3.3).

Although closure and self-maintenance do not assure that a set of species will
remain unchanged in time, the lack of them does imply that the system will even-
tually qualitatively move to a different set of molecules (Section 4.2). In a vast
class of systems, which we call consistent (Section 3.5), it is possible to define a
generator operator such that for any set of molecules an organisation is uniquely
defined. The organisation generated by a set A represents the largest possible set
of molecules that can stably exists when starting with A.

This implies that organisations partition the set of all possible sets of molecules,
where a partition consists of all combinations of molecular species that generate
the same organisation. Thus, as the system qualitatively progress from one set to
another we can follow it on the more tractable set of all possible organisations
(Section 4.3, Figure 4). The study of this movement together with a theorem relating
fixed points to organisations will be the core concepts of the dynamical part of
chemical organisation theory (Section 4).
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Before we enter into the theory, some prerequisites are introduced in the following
section.

2. REACTION SYSTEMS

The theory described herein aims at understanding reaction systems. A reaction
system consists of molecules, and interaction rules among molecules that lead to
the appearance or disappearance of other molecules.

Note that we have to distinguish between a reaction system as an abstract descrip-
tion of all possible molecular species (and their reactions), and an actual reaction
vessel, which contains some concrete instances of molecules from the set of all
possible molecules. In order to refer to an element of a reaction system, we will use
a series of terms equivalently: molecule, compound, molecular species, or simply
species; keeping in mind that the term “molecule” is somehow imprecise, since it
can also refer to a concrete physical instance. Similarly, we call an interaction rule
among molecules shortly a reaction.

In passing we note that reaction systems are not only used to model chem-
ical phenomena. Their applications range from ecology,35 protobiology,36 systems
biology33 to computer science2 and reach even the study of language and social
systems.11

The description of a reaction system can be subdivided into three parts:12 (1) the
set of all possible molecules ! , (2) the set of all possible reactions among all the
possible molecules ", and (3) the dynamics (e.g. kinetic laws), which describes how
the reactions are applied to a collection of molecules inside a reaction vessel.16, 23

2.1 The Molecules !

Step (1) requires that we identify all players, that is, the set of all molec-
ular species that can appear in the model. The easiest way to specify
this set is to enumerate explicitly all molecules. For example: ! =
!H2"O2"H2O"H2O2#. Alternatively, ! can be defined implicitly, e.g., ! =
!all polymers that can be made from two monomers#. In this case, the set of all
possible molecules can even become infinite, or at least quite large. For simplicity,
but without loss of generality, we will consider here only small, explicit sets of
molecular species. And we will refer to molecular species just by an index i ∈ ! ,
neglecting their structure.

2.2 The Reaction Rules "

A reaction rule like 2H2 +O2 → 2H2O can be interpreted as a transformation of
molecules, e.g., the transformation of hydrogen and oxygen molecules into water
molecules. We will represent reaction rules by two matrixes $li"%& and $ri"%&, where
li"% and ri"% is the stoichiometric coefficient of molecule i ∈! in reaction % ∈" on
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the lefthand side and on the righthand side, respectively. The set of all molecules
! and a set of reaction rules " define a reaction network:

Definition 1 (reaction network)1 Given a set ! of elements, called molecules or
molecular species, and a set of reaction rules " given by the lefthand side and
righthand side stoichiometric matrices $li"%& and $ri"%&, respectively, with i ∈! and
% ∈ ". We call the pair $!""% a reaction network (or algebraic chemistry, as in
Ref.10).

In the following LHS$%& denotes the set of molecules that appear on the left-
hand side of reaction % ∈ ". And RHS$%& the molecules on the righthand side.
Furthermore we define "A ⊆ " as the subset of reactions that can “fire” when the
molecules of the set A are present; formally "A = !% ∈ "'LHS$%& ⊆ A#.

The stoichiometric matrix S is defined as

S = $si"%& = $ri"% − li"%&' (1)

An entry si"% of the stoichiometric matrix denotes the net amount of molecules of
type i produced in reaction %.

Example 1 (reaction network, three species) The reaction network consists of
m = 4 molecular species ! = !H2"O2"H2O"H2O2# and r = 2 reaction rules " =
!%1 ( 2H2 +O2 → 2H2O" %2 ( 2H2O2 → 2H2O +O2#.

LHS$%1& = !H2"O2#" RHS$%1& = !H2O# (2)

LHS$%2& = !H2O2#" RHS$%2& = !H2O"O2#' (3)

For A = !H2# ( "A = !# ' (4)

For A = !H2O2# ( "A = !%2 ( 2H2O2 → 2H2O +O2#' (5)

For A = !H2"O2# ( "A = !%1 ( 2H2 +O2 → 2H2O#' (6)

$li"%& =

⎛

⎜⎜⎝

2 0
1 0
0 0
0 2

⎞

⎟⎟⎠ " $ri"%& =

⎛

⎜⎜⎝

0 0
0 1
2 2
0 0

⎞

⎟⎟⎠

H2

O2

H2O
H2O2

" (7)

S =

⎛

⎜⎜⎝

−2 0
−1 1

2 2
0 −2

⎞

⎟⎟⎠

H2

O2

H2O
H2O2

' (8)

1 From a theoretical point of view, a reaction network is a directed bipartite graph whose nodes represent
molecules and reaction rules, respectively, and whose edges are weighted by stoichiometric coefficients.
Further note that a reaction network as defined here with whole-numbered stoichiometric coefficients is
equivalent to a Petri net.31
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In the following, we will denote molecules with lowercase characters like a, b,
c, d and sets of molecules by uppercase characters like A, B, C, O, S. A character
like a stands for the name of a molecular species like H2O. The following abstract
example will be used throughout this chapter to illustrate the various concepts.

Example 2 (reaction network, five species) There are five molecular species
! = !a"b" c"d" s#, which react according to the following reaction rules

" = !

%1 ( a+ s → 2a"

%2 ( b+ s → 2b"

%3 ( a+b → 2a"

%4 ( b+ c → 2b"

%5 ( a+d → c+d"

%6 ( ∅ → s"

%7 ( a → ∅"

%8 ( b → ∅"

%9 ( c → ∅"

%10 ( s → ∅#'

A graphical representation of this reaction network can be found in Figure 1.
The lefthand side and righthand side stoichiometric matrixes read:

$li"%& =

⎛

⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0 0 0
0 1 1 1 0 0 0 1 0 0
0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

a
b
c
d
s

(9)

and

$ri"%& =

⎛

⎜⎜⎜⎜⎝

2 0 2 0 0 0 0 0 0 0
0 2 0 2 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎠

a
b
c
d
s

' (10)

2
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b

Figure 1. Reaction network of Example 2. A “2” refers to the stoichiometry, e.g. in the reaction rule
%1 ( a+ s−→2a
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Subtracting $li"%& from $ri"%& leads to the stoichiometric matrix S = $si"%& = $ri"%&−
$li"%&:

S =

⎛

⎜⎜⎜⎜⎝

1 0 1 0 −1 0 −1 0 0 0
0 1 −1 1 0 0 0 −1 0 0
0 0 0 −1 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0

−1 −1 0 0 0 1 0 0 0 −1

⎞

⎟⎟⎟⎟⎠

a
b
c
d
s

' (11)

2.3 Dynamics

A reaction network $!""% specifies the structure of a reaction system, but does not
contain any notion of time. A common way to specify the dynamics of the reaction
system is by using a system of ordinary differential equations of the following form:

ẋ$t& = Sv$x$t&& (12)

where x = $x1" ) ) ) "xm&T ∈ Rm is a concentration vector depending on time t, S a
stoichiometric matrix, and v = $v1" ) ) ) "vr&

T ∈ Rr a flux vector depending on the
current concentration vector. A flux v% ≥ 0 describes the velocity or turnover rate of
reaction % ∈ ". The actual value of v% depends usually on the concentration of the
species participating in the reaction % (i.e., LHS$%&). In order to avoid unwanted
mathematical effects, we demand that v is differentiable, meaning intuitively that
it depends “smoothly” on the concentration vector x. Beside this mathematical
assumption, there are (at least) two further assumptions that are due to the nature of
reaction systems. These assumptions relate the function v to the reaction rules ":

Assumptions 1: If a species i is necessary for a reaction % to take place, it must
appear on the lefthand side of that reaction (i.e., i ∈ LHS$%&). This implies that for
all molecules i ∈ ! and reactions % ∈ " with i ∈ LHS$%&, if xi = 0 then v% = 0.
The flux v% must be zero, if the concentration xi of a molecule appearing on the
lefthand side of this reaction is zero. This assumption meets the obvious fact that a
molecule has to be present to react.

Assumptions 2: If all species LHS$%& of a reaction % ∈ " are present in the
reactor (e.g. for all i ∈ LHS$%&"xi > 0) the flux of that reaction is positive, (i.e.,
v% > 0). In other words, the flux v% must be positive, if all molecules required for
that reaction are present, even in small quantities (cf. Definition 14 (instance) and
Definition 15 (abstraction)).

There is a large amount of kinetic laws fulfilling these assumptions, including
all laws that are usually applied in practice. The most fundamental of such kinetic
laws is mass-action kinetics, which is just the product of the concentrations of the
interacting species:

v% =
∏

i∈!
xli"% ' (13)
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It should be noted that more complicated laws like Michaelis-Menten kinetics are
derived from mass-action kinetics. This is especially true for many laws describing
inhibition.23 So, we may interprete these more complicated laws as “syntactic sugar”
that allows to describe large reaction systems in a more compact way, that is, with
a smaller number of species.

2.4 Modifiers

When applying chemical organisation theory, we can neglect modifiers that inhibit
a reaction, because they are not necessary for the reaction to occur (Assumption 2)
and they usually do not switch off the reaction completely, which follows from the
fact that laws of inhibition are derived from Michaelis-Menten kinetics. However,
in case an inhibitory effect is so strong that it practically switches off a reaction
completely, it has to be considered (not shown here).

For the theory, we can also neglect modifiers that enhance a reaction, as long
as they are not necessary for that reaction to take place. Note that a modifier i
that is necessary for a reaction % has to appear as a catalyst on the lefthand side
of that reaction, that is, i ∈ LHS$%& (Assumption 2) and on its righthand side (i.e.,
i ∈ RHS$%&).

2.5 Input and Output

There are many processes that give rise to an inflow and outflow, such as, incident
sunlight, decaying molecules, or a general dilution flow. In this chapter we interpret
the reaction rule ∅ → a as an input of a, and a → ∅ as an output of a (∅ denoting
the empty set, which is, from a mathematical point of view, assumed to be always
present). In Example 2 (Figure 1) there is an inflow of s whereas a, b, c, and s
decay spontaneously.

2.6 Unbalanced Reaction Systems

As sometimes otherwise stated, in chemical reaction system models the masses
on the left hand side and right hand side can differ. That means that, formally,
a reaction can produce or consume mass. This might appear unrealistic, since it is
generally assumed that in a real chemical reaction mass is conserved.

However in a reaction system model it makes sense to consider unbalanced
reaction rules, too, which can lead to more elegant and simpler models. We have
already encountered two examples in the previous section, namely, inflow and
outflow reaction rules. Further examples are models of exponential growth (e.g.,
a → 2a) and other models assuming implicitly an unlimited substrate. This substrate
is removed to obtain a simpler model, compare Example 9 (hypercycle without
an explicit substrate, Section 3.5.1) with Example 10 (hypercycle with an explicit
substrate, Section 3.5.2).
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Chemical organisation theory can also deal with unbalanced reaction systems,
including those where some molecular species cannot operate at steady state and
can exhibit unlimited growth.

3. CHEMICAL ORGANISATION THEORY: STATIC PART

The first part of the theory deals with the static structure of a reaction system,
that is, the molecules ! and the reactions ". Instead of considering a state, e.g.
a concentration vector, we limit ourself to the analysis of the set of molecules
present in that state.

In classical analysis, we study the movement of the system in state space. Instead,
here, we consider the movement from one set of molecules to another. As in the
classical analysis of the dynamics of the system, where fixed points and attractors
are considered more important than other states, some sets of molecules are more
important than others.

In order to find those sets, we introduce some properties that define them,
namely: closure, semi-self-maintenance, semi-organisation, self-maintenance, and
finally being an organisation. All definitions herein refer to a reaction network
$!""%.

3.1 Closed Sets

The first property of a set of molecules, called closure, assures that no new molecular
species can be generated by the reactions inside the set or equivalently that all
molecules that can be generated by reactions inside the set are already inside that
set.

Definition 2 (closed set20) A set C ⊆ ! is closed, if for all reactions % ∈ "C ,
RHS$%& ⊆ C.

Given a set A ⊆! , we can always generate its closure GCL$A& according to the
following definition:

Definition 3 (generate closed set20) Given a set of molecules A ⊆ ! , we define
GCL$A& as the smallest closed set C containing A. We say that A generates the
closed set C = GCL$A& and we call C the closure of A.

In passing we note that this definition is unambiguous: Let us suppose, ad
absurdum, that we can find two smallest closed sets C1 ̸= C2 both containing C.
Against our assumption, their intersection would be an even smaller closed set
containing C, because the intersection of closed sets is obviously closed, too.

We can generate the closed set for a given set A efficiently by the following
algorithm: add all reaction products among molecules of A and insert them into
A and repeat this procedure until no new molecule can be inserted anymore (for
infinite systems, a limit has to be taken).
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Figure 2. Fraction of the lattice of all sets of molecules from Example 2. Shown are all sets containing
molecule s and small sets like !a# and !#. Note that an organisation is a closed and self-maintaining set

Example 3 (closed sets) In our Example 2, Figure 2, there are 14 closed
sets: #CL = !!s#" !a" s#" !b" s#" !c" s#" !d" s#" !a"b" s#" !a" c" s#" !b"d" s#" !c"d" s#"
!a"b" c" s#" !a" c"d" s#" !b" c"d" s#" !a"b" c"d" s##. The empty set is not closed,
because there is an inflow of molecule s. The set A = !a"d" s# is not closed, because
c can be produced by the reaction a+d → d + c. The closed set generated by A
is: C = GCL$A& = !a" c"d" s#.

A common algebraic concept that we shall use very often, from now on, is the
lattice. A lattice, is a partially ordered set (poset) in which any two elements have a
greatest lower bound (here, their intersection) and a least upper bound (here, their
union).

Given the generate closed set operator we can define two basic operations, a union
operation $U ,CL V & and an intersection operation $U ⊓CL V & on closed sets:

U ,CL V ≡ GCL$U ∪V &" and (14)

U ⊓CL V ≡ GCL$U ∩V &' (15)

Trivially, closed sets, with the operations ,CL and ⊓CL, form a lattice
$#CL",CL"⊓CL%.

Closure is important because the closed set generated by a set (its closure)
represents the largest possible set that can be reached from a given set of molecules.
Furthermore a set that is closed cannot generate new molecules and is in that
sense more stable with respect to novelty. As such the concept of closure alone
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can already give valuable insight into the structure and organisation of complex
chemical networks as shown by Ebenhöh et al..13

3.2 Semi-Self-Maintaining Sets

Before we introduce the second important property called “self-maintenance”, an
intermediate step will be taken by defining a property that is necessary for a set to
be self-maintaining but not sufficient. This property, called semi-self-maintenance,
is easier to check then the property self-maintenance. Furthermore, in reaction
systems like catalytic flow system (Section 3.5.1), every semi-self-maintaining set
is also self-maintaining, and thus it is sufficient to check in those systems just the
semi-self-maintenance property.

The property semi-self-maintaining assures that every molecule that is consumed
within a set, is produced within that set.

We say that a molecule i ∈ ! is produced within a set A ⊆ ! , if there exists
a reaction % ∈ "A with si"% > 0. In the same way, we say that a molecule i ∈ A is
consumed within the set A, if there is a reaction % ∈ "A with si"% < 0.

Definition 4 (semi-self-maintaining set10) A set of molecules S ⊆ ! is called
semi-self-maintaining, if all molecules i ∈ S that are consumed within S are also
produced within that set S.

Example 4 (semi-self-maintaining sets) In our Example 2 there are 13
semi-self-maintaining sets: #SSM = !!#" !s#" !d#" !a" s#" !b" s#" !d" s#" !a"b" s#"
!a"d" s#" !b"d" s#" !a"b" c"d#" !a"b"d" s#" !a" c"d" s#" !a"b" c"d" s##.

Note that the concept of (semi-) self-maintenance is closely related to the concept
of an autocatalytic set.14, 27, 34 An autocatalytic set is usually defined as a set of
molecules such that each molecule is produced by at least one catalytic reaction
within that set.25

3.3 Self-Maintaining Sets

In a semi-self-maintaining set, all molecules that are consumed are produced; yet
this does not guarantee that the total amount of mass can be maintained.

Example 5 (reversible reaction) A simple counterexample is the following
reversible reaction in a flow reactor: ! = !a"b#""= !a → b"b → a"a → ∅"b →
∅#. Both molecules, a and b, decay. S = !a"b# is a semi-self-maintaining set,
because a is produced by the reaction b → a, and b is produced by the reaction



CHEMICAL ORGANISATION THEORY 371

a → b. But, obviously, the system !a"b# is not stable, in the sense that there cannot
be a stationary state in which the two molecules a and b have positive concentra-
tions: both molecules decay and cannot be sufficiently reproduced, and thus they
will finally vanish.

The solution to this problem is to consider the overall ability of a set to maintain
its total mass. We call such sets simply self-maintaining.

Definition 5 (self-maintaining10) Given an algebraic chemistry $!""% with m =
'!' molecules and r = '"' reactions, and let S = $si"j& be the $m×r& stoichiometric
matrix implied by the reaction rules ", where si"% denotes the number of molecules
of type i produced in reaction %. A set of molecules S ⊆! is called self-maintaining,
if there exists a flux vector v ∈ Rr such that the following three conditions apply:
(1) for all reactions % ∈"S the flux v% > 0; (2) for all remaining reactions % 2"S ,
the flux v% = 0; and (3) for all molecules i ∈ S, the production rate $Sv&i ≥ 0.

v% denotes the element of v describing the flux (i.e., velocity) of reaction %. $Sv&i

is the production rate of molecule i given flux vector v. It is practically the sum of
fluxes producing i minus the fluxes consuming i.

Example 6 (reversible reaction (cont.)) For the reversible reaction, Example 5,
the stoichiometric matrix becomes S = $$−1" 1&, $1"−1&, $−1" 0&, $0"−1&&, and
we can see that there is no positive flux vector v ∈ R4, such that Sv ≥ 0. In other
words, no matter how we chose the velocity of the reactions, it is not possible to
keep a and b in a reaction vessel. In fact, in that example, only the empty set !#
is self-maintaining. In case a and b would not decay, " = !a → b"b → a#, the set
!a"b# would be (as desired) self-maintaining, because there is a flux vector, e.g.,
v = $1'0" 1'0&, such that Sv = 0 ≥ 0 with S = $$−1" 1&" $1"−1&&.

Example 7 (self-maintaining) In our five species network (Example 2, Figure 2)
all semi-self-maintaining sets except !a"b" c"d# are also self-maintaining. The
criterion for self-maintenance will be illustrated by looking at the self-maintaining
set S = !s"a"d# in more detail. First we have to find all the reactions active within
S, this means to find all reactions % ∈ "S ⊆ " where the left hand side consists
of molecules from S (i.e., LHS$%& ⊆ S). There are five such reactions: "S = !%1 (
a+ s → 2a" %5 ( a+d → d+c" %6 ( ∅ → s" %7 ( a → ∅" %10 ( s → ∅# These reactions
correspond to column 1, 5, 6, 7, and 10 of the stoichiometric matrix S, Eq. (11), and
to the fluxes v1"v5"v6"v7, and v10. According to the definition of self-maintenance,
these five fluxes must be positive while the remaining fluxes must be zero. Now, in
order to show that S = !s"a"d# is self-maintaining, we have to find positive values
for v1"v5"v6"v7, and v10 such that a, c, and s are produced at a non-negative rate.
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Here, this can be achieved by setting v1 = 3"v5 = 1"v6 = 10"v7 = 1"v10 = 1. When
multiplying this flux vector with the stoichiometric matrix,

Sv =

⎛

⎜⎜⎜⎜⎝

1 0 1 0 −1 0 −1 0 0 0
0 1 −1 1 0 0 0 −1 0 0
0 0 0 −1 1 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0

−1 −1 0 0 0 1 0 0 0 −1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
0
0
0
1

10
1
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

1
0
1
0
6

⎞

⎟⎟⎟⎟⎠

a
b
c
d
s

"

we can see that all molecules of S = !a"d" s# are produced at a non-negative
rate. For example, d is produced at rate 0 and s is produced at rate 6. So, we
can conclude that !a"d" s# is self-maintaining. Note further that, in Example 2,
molecule d will always be produced at zero rate $$Sv&4 = 0&, independently on how
we chose v.

In a self-maintaining set S every molecule that is consumed by a reaction % ∈"s

must be also produced by a reaction within that set, in order to achieve a non-
negative production of that molecule. Therfore we can conclude, as mentioned
previously:

Lemma 1 10 Every self-maintaining set is semi-self-maintaining (proof in Ref. 10).

In other words, if a set is not semi-self-maintaining – a property easy to check –
the set cannot be self-maintaining. The opposite is not generally true; there are
sets that are semi-self-maintaining but not self-maintaining, such as !a"b" c"d# in
Example 2.

Note that the empty set is always self-maintaining (as it has nothing to maintain)
and the set of all possible molecules is always closed (as there is nothing that can
be added to it). On the other hand the empty set is not necessarily closed, and the
set of all possible molecules is not necessarily self-maintaining.

3.4 Organisations

Together, closure and self-maintenance lead to the central definition of this
approach2:

Definition 6 (organisation10, 20) A set of molecules O ⊆! that is both closed and
self-maintaining is called an organisation.

2 Note that our definition of an organisation intentionally reads like the definition by Fontana and Buss.20

However, we are using a more general definition of self-maintenance, which includes the definition by
Fontana and Buss and thus ensures “compatibility” with their approach.
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An organisation represents an important combination of molecular species, which
are likely to be observed in a large reaction vessel on the long run (cf. Theorem 1,
Section 4.2). A set of molecules that is not closed would not exist for a long time,
because new molecules will appear, changing that set. A set of molecules that is not
self-maintaining will also inevitably change, since molecules not-maintained will
vanish.

In the same way as we defined an organisation, we can define a semi-organisation
as a closed and semi-self-maintaining set of molecules. From Lemma 1 trivially
follows that every organisation is a semi-organisation.

Example 8 (organisations) In our example (Example 2) there are 14 closed sets,
13 semi-self-maintaining sets, 12 self-maintaining sets, and 8 semi-organisations.
All 8 semi-organisations are also organisations: # = !!s#, !a" s#, !b" s#, !d" s#,
!a"b" s#, !b"d" s#, !a" c"d" s#, !a"b" c"d" s##. Although the reaction system is small,
its organisational structure is already difficult to see when looking at the rules or
their graphical representation. In Figure 2, a Hasse diagram with all 16 possible
sets of molecules containing the substrate s together with some smaller sets is
shown.

Finding all organisations of a general reaction system appears to be computa-
tionally difficult (Section 6.2). One approach is to find the semi-organisations first,
and then check, which of them are also self-maintaining.

3.5 Consistent Reaction Systems

The property of the set of organisations and semi-organisations depends strongly
on the type of system studied. In this section we discuss a class of systems, called
consistent reaction systems, where the set of organisations always forms an algebraic
lattice, that is, there is a unique union and intersection of organisations and there is
a unique largest organisation (if there is a finite number of organisations).

Definition 7 (consistent10) A reaction network is called consistent, if (1) given
any two (semi-)self-maintaining sets A and B then their set-union A ∪ B is also
(semi-)self-maintaining; and (2) the closure GCL$A& of any (semi-)self-maintaining
set A is (semi-)self-maintaining.

Now, in Sections 3.5.1–3.5.3, we will present three types of consistent systems,
which can be easily (i.e., in linear time) identified by looking at the reaction rules
only. In practice it makes sense to check first, whether the system to be analysed
falls into one of these classes.
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3.5.1 Catalytic flow system

In a catalytic flow system all molecules i ∈! are consumed by first-order reactions
of the form i → ∅ (dilution) and there is no molecule consumed by any other
reaction. So, each molecule i decays spontaneously, or equivalently, is removed
by a dilution flow. Apart from this, each molecule can appear only as a catalyst
(without being consumed).

Definition 8 (catalytic flow system10) A reaction network $!""% is called a
catalytic flow system, if for all molecules i ∈!: (1) there exists a first-order decay
reaction % ∈ " with LHS$%& = !i# and si"% = −1; (2) for all reaction % ∈ " with
si"% < 0, si"% = −1 and LHS$%& = !i# (reactions that consume i must be first-order
decay reactions).

Examples of catalytic flow system are the replicator equation,35 the hyper-
cycle,14, 15 the more general catalytic network equation,40 various models of auto-
catalytic sets,3, 24 and AlChemy.19 Furthermore some models of genetic regulatory
networks and social system11 are catalytic flow systems.

Example 9 (catalytic flow system) The three-membered elementary hyper-
cycle14,15 under flow condition can be represented by three molecular species
! = !a"b" c# and six reaction rules:

" = !a+b → a+2b" a → ∅"

b+ c → b+2c" c → ∅
c+a → c+2a" b → ∅#'

We can see, that all three molecules decay by first-order reactions (representing
the dilution flow), and that no molecule is consumed by any of the three remaining
reactions. There are two organisations: !# and !a"b" c#. The catalytic reaction
rules are not balanced, since a substrate available at a constant concentration is
implicitly assumed to be consumed.

In a catalytic flow system we can easily check a set for being self-maintaining,
because:

Lemma 2 10 In a catalytic flow system, all semi-self-maintaining sets are self-
maintaining (Proof in Ref.10).

From which follows immediately:

Lemma 3 10 In a catalytic flow system, every semi-organisation is an organisation.

So, in a catalytic flow system we can easily check, whether a set O is an
organisation by just checking whether it is closed and whether each molecule in
that set is produced by that set. Furthermore, given a set A, we can always generate
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an organisation by adding all molecules produced by A until A is closed and then
removing molecules that are not produced until A is (semi-) self-maintaining. With
respect to the intersection and union of (semi-) organisations the set of all (semi-)
organisations of a catalytic flow system forms an algebraic lattice (see below).
A result which has already been noted by Fontana and Buss.20

3.5.2 Reactive flow system

In a reactive flow system all molecules are consumed by first-order reactions of the
form !i# → ∅ (dilution). But as opposed to the previous system, we allow arbitrary
additional reactions in " and do not restrict these reactions to be catalytic. Thus
note how a catalytic flow system is a particular kind of reactive flow system.

Definition 9 (reactive flow system10) A reaction network $!""% is called a reac-
tive flow system, if for all molecules i ∈! , there exists a first-order decay reaction
% ∈ " with LHS$%& = !i# and si"% = −1.

This is a typical situation for chemical flow reactors or bacteria that grow and
divide.33 Note that in a cell that grows and divides, every molecule including the
genome is subject to a dilution flow.

In a reactive flow system, semi-organisations are not necessarily organisations.
Nevertheless, both the semi-organisations and the organisations form a lattice
$#","⊓%. Moreover, the union $,& and intersection $⊓& of any two organisations
is an organisation (see below).

Example 10 (reactive flow system) As an example, we take the three-membered
elementary hypercycle as before, but add an explicit substrate s. There are four
molecules ! = !a"b" c" s# and seven reaction rules:

" =!a+b+ s → a+2b" a → ∅"

b+ c+ s → b+2c" b → ∅"

c+a+ s → c+2a" c → ∅"

s → ∅#'

We can see, that again all molecules decay by first-order reactions (representing
the dilution flow), but now a molecule, s, is consumed by other reactions. Note that
in this example there is only one organisation (the empty organisation), and even no
semi-organisation that contains one or more molecules, because there is no inflow
of the substrate. If we would add a reaction equation ∅ → s representing an inflow
of the substrate, we would obtain two organisations: !s# and the “hypercycle”
!a"b" c" s#.
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3.5.3 Reactive flow system with persistent molecules

In a reactive flow system with persistent molecules there are two types of molecules:
persistent molecules and non-persistent molecules. All non-persistent molecules are
consumed (as in the two systems before) by first-order decay reactions, whereas a
persistent molecule is not consumed by any reaction at all.

Definition 10 (reactive flow system with persistent molecules10) A reaction
network $!""% is called a reactive flow system with persistent molecules, if we
can partition the set of molecules in persistent P and non-persistent molecules
P̄$! = P ∪ P̄"P ∩ P̄ = ∅& such that: (i) for all non-persistent molecules i ∈ P̄:
there exists a first-order decay reaction % ∈ " with LHS$%& = !i# and si"% = −1;
and (ii) for all persistent molecules i ∈ P: there does not exist a reaction % ∈ "
with si"% < 0.

An example of a reactive flow system with persistent molecules is Example 2,
where d is a persistent molecule. The reactive flow system with persistent molecules
is the most general of the three systems where the semi-organisations and organisa-
tions always form a lattice, and where the generate organisation operator can prop-
erly be defined (see below). As in a reactive flow system, not all semi-organisations
are organisations.

Lemma 4 10 A reactive flow system with persistent molecules is consistent (Proof
in Ref.10).

Remember that the intersection of two closed sets is again always closed. In a
similar way, in consistent reaction systems, the union of self-maintaining sets is
again self-maintaining. However, Section 3.7 will demonstrate that the latter is not
necessarily true for general reaction systems.

3.6 Common Properties of Consistent Reaction Systems

Consistent reaction systems (including those discussed in Sections 3.5.1–3.5.3)
possess some comfortable properties that allow us to present a series of useful
definitions and lemmas.

In a consistent reaction system, given a set of molecules A, we can uniquely
generate a semi-self-maintaining set, a semi-organisation, a self-maintaining set,
and an organisation in a similar way as we have generated a closed set. And like for
closed sets, we can define the union and intersection on semi-self-maintaining sets,
semi-organisations, self-maintaining sets, and organisations, respectively. Further-
more, each, the semi-self-maintaining sets, semi-organisations, self-maintaining
sets, and organisations form a lattice together with their respective union and
intersection operators. This does not generalise to general reaction systems (see
Section 3.7), because for a general reaction system we cannot uniquely generate
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a semi self-maintaining set, a semi-organisation, a self-maintaining set, nor an
organisation as is the case with consistent reaction systems.

3.6.1 Generate semi-self-maintaining set

Definition 11 (generate semi-self-maintaining set10) Given a set of molecules
A ⊆! of a consistent reaction system, we define GSSM$C& as the biggest semi-self-
maintaining set S contained in A. We say that A generates the semi-self-maintaining
set S = GSSM$A&.

In order to calculate the semi-self-maintaining set generated by A, we remove
those molecules that are consumed and not produced within A, until all molecules
consumed are also produced, and thus reaching a semi-self-maintaining set. The
operator GSSM (generate semi-self-maintaining set) implies the union ,SSM and
intersection ⊓SSM on semi-self-maintaining sets: Given two semi-self-maintaining
sets S1 and S2, the semi-self-maintaining sets generated by their union $S1 ,CL S2&
and intersection $S1 ⊓CL S2& are defined as: S1 ,SSM S2 ≡ GSSM$S1 ∪S2&, and S1 ⊓SSM

S2 ≡ GSSM$S1 ∩S2&, respectively.

3.6.2 Generate self-maintaining set

Definition 12 (generate self-maintaining set10) Given a set of molecules C ⊆ !
of a consistent reaction system, we define GSM$C& as the biggest self-maintaining
set S contained in C. We say that C generates the self-maintaining set S = GSM$C&.

For consistent reaction systems, GSM$C& is always defined, because the union
$∪& of two self-maintaining sets is self-maintaining; and further, every set is either
self-maintaining, or it contains a unique biggest self-maintaining set. Thus from
every set we can generate a self-maintaining set. Note that self-maintaining sets are
also semi-self-maintaining, GSM$GSSM$S&& ≡ GSSM$S&, which is a useful property,
because GSSM$S& is easier to compute. As usual, the union ,SM and intersection
⊓SM of self-maintaining sets S1"S2 are defined as S1 ,SM S2 ≡ GSM$S1 ∪S2&, S1 ⊓SM

S2 ≡ GSM$S1 ∩S2&, respectively. Thus also the set of all self-maintaining sets #SM

forms a lattice $#SM",SM"⊓SM%. If S is self-maintaining, its closure GCL$S& is
self-maintaining, too (again, not valid for general reaction systems).

3.6.3 Generate organisation

There are many ways in which we can generate an organisation from a set. We
will present here the simplest one, which implicitly assumes that molecules are
produced quickly and vanish slowly. This assumption leads to the largest possible
organisation generated by a set:

Definition 13 (generate organisation10, 20) Given a set of molecules A ⊆ ! of a
consistent reaction system, we define

G$A& = GSM$GCL$A&&' (16)

We say that A generates the organisation O = G$A&.
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Equivalently we can also generate a semi-organisation O = GSO$A& =
GSSM$GCL$A&&.

Following the same scheme as before, the union , and intersection ⊓ of two
organisations O1 and O2 is defined as the organisation generated by their set-union
and set-intersection:

O1 ,O2 ≡G$O1 ∪O2&" (17)

O1 ⊓O2 ≡G$O1 ∩O2&' (18)

Equivalently G$A& = GSM$GSSM$GCL$A&&&, which allows to compute the organ-
isation generated by a set more easily in three steps.

Thus, for consistent reaction systems, also the set of all organisations # forms a
lattice $#","⊓%. This important fact should be emphasised by the following lemma:

Lemma 5 10 Given a reaction network $!""% of a consistent reaction system and
all its organisations #, then $#","⊓% is a lattice.

Knowing that the semi-organisations and organisations form a lattice, and that
we can uniquely generate an organisation for every set, is a useful information.
Then we know, for example, that there is a largest organisation. Furthermore we
can map every state of a reaction vessel uniquely to an organisation (Section 4.1),
which allows to characterise states and to partition the state space, uniquely.

In order to find the whole set of organisations, it is impractical just to check all
the possible sets of molecules. Instead, we can start by computing the lattice of
semi-organisations, and then test only those sets for self-maintenance. Furthermore,
if the semi-organisations form a lattice, we can start with small sets of molecules
and generate their semi-organisations, while the ,SO operator can lead us to the
more complex semi-organisations.

3.7 General Reaction Systems

When we consider general reaction systems, that is, reaction networks without any
constraints, we cannot always generate a self-maintaining set uniquely. This implies
that in a general reaction system neither the set of organisation nor the set of semi-
organisations necessarily form a lattice. Examples of this can be found in planetary
atmosphere chemistries.8, 42

Example 11 (Reaction system without a lattice of organisation) In this example
we present a simple reaction network where the set of organisations does not form
a lattice, and where we can not always generate an organisation for any given set
of molecules:

! = !a"b" c#" " = !a+b → c#' (19)



CHEMICAL ORGANISATION THEORY 379

{}

{a} {b} {c}

{a, c} {b, c}

Figure 3. Example of a general reaction system that does not have a lattice of organisations. There are
three molecules ! = !a"b" c# and just one reaction rule " = !a+b → c#

This example can be interpreted as an isolated system, where there is no inflow nor
outflow. a and b simply react to form c. Obviously, every set that does not contain a
together with b is an organisation. So, there are 6 organisations: !#, !a#, !b#, !c#,
!a" c#, and !b" c#. As illustrated by Figure 3, there is no unique largest organisation
and therefor the set of organisations does not form a lattice. Furthermore, given
the set !a"b" c#, we can not generate an organisation uniquely, because there does
not exist a unique largest self-maintaining set contained in !a"b" c#. There are
two self-maintaining sets of equal size: !a" c# and !b" c#. Why can this not happen
in a reactive flow system with persistent molecules ? In a reactive flow system
with persistent molecules, the set-union of two self-maintaining sets is again self-
maintaining. Therefore there can not exist two largest self-maintaining sets within
a set A, because their union would be a larger self-maintaining set within A (see
Lemma 5). Note that each organisation makes sense, because each organisation
represents a combination of molecules that can stably exists in a reaction vessel,
which does not allow an outflow of any of the molecules according to the rules ".

4. CHEMICAL ORGANISATION THEORY: DYNAMICAL PART

The previous section deals with molecules ! and their reaction rules ", but not with
the evolution of the system in time. However, the structures that we identified (i.e.,
the organisations) possess a strong relation to the potential dynamical behaviour of
the reaction system. We will now get back the dynamics into our consideration.

To add dynamics to the theory, we have to formalise the dynamics of a system.
In a very general approach, the dynamics is given by a state space X and a formal
definition (mathematical or algorithmic) that describes all possible movements in
X for any possible initial state x0 ∈ X. For simplicity, we assume a deterministic
dynamical process described by a system of ordinary differential equations (Eq. (12),
Section 2.3).

4.1 Connecting to the Static Theory

Let us assume now that x ∈ X represents the state of a reaction vessel, which
contains molecules from ! . In the static part of the theory we consider just the
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set of molecular species present in the reaction vessel, but not their concentrations,
spatial distributions, velocities, and so on.

Now, given the state x of the reaction vessel, we need a function that maps
uniquely this state to the set of molecules present. Vice versa, given a set of
molecules A ⊆ ! , we need to know, which states from X correspond to this set of
molecules. For this reason we introduce a mapping * called abstraction, from X
to $$!&, which maps a state of the system to the set of molecules that are present
in the system being in that state. The exact mapping can be defined precisely later,
depending on the state space, on the dynamics, and on the actual application.

The concept of instance is the opposite of the concept of abstraction. While *$x&
denotes the molecules represented by the state x, an instance x of a set A is a state
where exactly the molecules from A are present according to the function *.

Definition 14 (instance10) Given a function * ( X → $$!& (called abstraction),
which maps a state to a set of molecules, we say that a state x ∈ X is an instance
of A ⊆ ! , if and only if *$x& = A.

In particular, we can define an instance of an organisation O (if *$x& = O) and
an instance of a generator of O (if G$*$x&& = O). Loosely speaking we can say
that x generates organisation O.

Note that a state x of a consistent reaction system (Section 3.5) is always an
instance of a generator of one and only one organisation O. This leads to the
important observation that a lattice of organisations partitions the state space X,
where a partition XO ⊆ X implied by organisation O is defined as the set of all
instance of all generators of O:

XO = !x ∈ X'G$*$x&& = O# $states generating organisation O&' (20)

Note that as the system state evolves over time, the organisation G$*$x$t&&& gener-
ated by x$t& might change (see below, Figure 4).

4.2 Fixed Points are Instances of Organisations.

Now we will describe a theorem that relates fixed points to organisations, and by
doing so, underlines the relevancy of organisations. We will show that, given an
ordinary differential equation (ODE) of a form that is commonly used to describe
the dynamics of reaction systems, every fixed point of this ODE is an instance
of an organisation. We therefore assume in this section that x is a concentration
vector x = $x1"x2" ) ) ) "x'!'&, X = R'!', xi ≥ 0 where xi denotes the concentration
of molecular species i in the reaction vessel, and ! is finite.

The dynamics is given by an ODE of the form ẋ = Sv$x& where S is the stoichio-
metric matrix implied by the reaction network $!""% (see Section 2.2). v$x& =
$v1$x&" ) ) ) "vr$x&& ∈ Rr is a flux vector depending on the current concentration x,
where r denotes the number of reaction rules. A flux v%$x& ≥ 0 describes the rate
of a particular reaction %. For the function v% we require only that v%$x& is positive,
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Figure 4. Example of a constructive dynamics in state space (left) and its visualisation in the lattice of
organisations (right). Reaction network: Example 2 (five species) as shown in Figure 1. The following
constructive perturbations are performed: At t = 10 we add a tiny amount (i.e., 0.001 units) of a; at t = 25
we add 0.8 units of d; and at t = 35 we add 0.001 units of b. Simulation parameters: v1 = 30+a,2+s,,
v2 = 10+b,2+s,, v3 = +a,+b,, v4 = 10+b,+c,, v5 = +a,+d,, v6 = 2, v7 = v8 = v9 = 1. Initial state: +a, = 0,
+b, = 1, +c, = 0, +d, = 0, +s, = 1. ODE: Eq. (12) with Eq. (11). Threshold - = 0'01 (cf. Eq. (21))

if and only if the molecules on the left hand side of the reaction % are present in
the state x, and otherwise it must be zero (see Assumption 2, Section 2.3). Often it
is also assumed that v%$x& increases monotonously, but this is not required here.

Given the dynamical system as ẋ = Sv$x&, we can define the abstraction of a
state x formally by using a (small) threshold - ≥ 0 such that all fixed points have
positive coordinates greater than -.

Definition 15 (abstraction10) Given a dynamical system ẋ = f$x& and let x be a
state in X, then the abstraction *$x& is defined by

*$x& = !i'xi > -" i ∈ !#" * ( X → $$!&" - ≥ 0 (21)

where xi is the concentration of molecular species i in state x, and - is a threshold
chosen such that it is smaller than any positive coordinate of any fixed point of
ẋ = f$x&, xi ≥ 0.

Setting - = 0 is a safe choice, because in this case * always meets the definition
above. But for practical reasons, it makes often sense to apply a positive threshold
greater zero, e.g., when we take into consideration that the number of molecules in
a reaction vessel is finite.

Theorem 1 Let us consider a general reaction system whose reaction network
is given by the reaction network $!""% and whose dynamics is given by ẋ =
Sv$x& = f $x& as defined before. Let x′ ∈ X be a fixed point, that is, f $x′& = 0, and
let us consider an abstraction * as given by Definition 15, which assigns a set of
molecules to each state x; then *$x′& is an organisation (Proof in Ref.10).



382 DITTRICH AND SPERONI D.F.

In other words, each fixed point x′ is an instance of an organisation. Intuitively
this has to be true, for the following reasons: Assume, ad absurdum, that there is
a fixed point formed by a set of species that is not closed. These molecules would
inevitably produce new species, which is in contradiction with the definition of a
fixed point. Now assume, ad absurdum, that there is a fixed point formed by a set
of species that is not self-maintaining. In this case, there is no flux vector such
that all species can be produced at a non-negative rate, which again contradicts the
definition of a fixed point.

From this theorem it follows immediately that a fixed point is an instance
of a closed set, a semi-self-maintaining set, and of a semi-organisation. Let us
finally mention that even if each fixed point is an instance of an organisation, an
organisation does not necessarily possess a fixed point. A well known example is
exponential growth: ! = !a#, " = !a → 2a#, ẋ = Sv$x& with S = 1 and v$x& = x.
There are two organisation the empty organisation !# and the organisation !a#,
which represents an exponentially growing population. Obviously there is no fixed
point with x > 0.

4.3 Movement from Organisation to Organisation

As opposed to an ODE, molecular systems are inherently discrete. The amount of
molecules present in a reaction vessel is countable and can be represented by a
natural number. In finite time, a molecular species can vanish completely, so that
its concentration becomes exactly zero. Therefore, the composition of molecular
species in a reaction vessel can change while new species enter or present species
vanish.

This change of the composition of molecular species can be interpreted as a
movement in the set of all possible sets of molecules $$!&. In that case we can
track the dynamics in the lattice of all possible sets of molecules. Note that $$!&
is usually much smaller than X, however it can still be quite large, since it grows
exponentially with the number of molecules.

As we can see in Figure 2, the lattice of all sets can already by quite complicated.
A solution to this problem is to track a constructive dynamics in the lattice (or set)
of organisations (Figure 4). This level of abstraction will filter out those changes
that do not lead to a new organisation. Thus providing a quite high-level view.

4.3.1 ODEs and movement in the set of organisations

In an ODE like Eq. (12) molecules cannot vanish completely in finite time. They
can only tend to zero as time tends to infinity. So, even if in reality a molecule
disappears, in an ODE model it might still be present in a tiny quantity. A molecule
whose concentration tends to zero in an ODE can be interpreted as a molecule
that would vanish completely in reality, which would change the set of molecules
present.

A common approach to overcome this problem is to introduce a concentration
threshold -, below which a molecular species is considered not to be present. We
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use this threshold in order to define the abstraction *, which just returns the set
of molecules present in a certain state. Additionally, we might use the threshold to
manipulate the numerical integration of an ODE by setting a concentration to zero,
when it falls below the threshold. In this case, a constructive perturbation (i.e., a
perturbation that causes a new molecular species to appear) has to be greater than
this threshold.

4.3.2 Downward movement

Not all organisations are stable. The fact that there exits a flux vector, such that
no molecule of that organisation vanishes, does not imply that this flux vector can
be realized when taking dynamics into account. As a result a molecular species
can disappear. Each molecular species that disappears simplifies the system. Some
molecules can be generated back. But eventually the system can move from a state
that generates organisation O1 into a state that generates organisation O2, with
O2 always below O1$O2 ⊂ O1&. We call this spontaneous movement a downward
movement.

Figure 4 illustrates this downward movement using the five-species example
(Example 2). Starting with high concentration of the molecular species !a"b" s# (at
time t = 15 in Figure 4) the system moves spontaneously down to organisation
!a" s#.

4.3.3 Upward movement

Moving up to an organisation above requires that a new molecular species appears
in the system. This new molecular species cannot be produced by a reaction among
present molecules (condition of closure). Thus moving to an organisation above is
more complicated then the movement down and requires a couple of specifications
that describe how new molecular species enter the system. Here we assume that
new molecular species appear by some sort of random perturbations or purposeful
interference, called constructive perturbation. We assume that a small quantity of
molecules of that new molecular species (or a set of molecular species) suddenly
appears.

Definition 16 (constructive perturbation) A perturbation that moves a state x to
a perturbed state x′ where the molecular species present in x are different from
those present in x′ is called a constructive perturbation.

Often, in practice, a constructive perturbation (appearance of new molecular
species) has a much slower time scale than the internal dynamics (e.g., chemical
reaction kinetics) of the system.

4.3.4 Visualising movements in the set of organisations

In order to display potential movements in the lattice or set of organisations, we
can draw links between organisations. As exemplified in Figure 4, these links can
indicate possible downward movements (down-link, blue) or upward movements
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(up-link, red). A neutral link (black line) denotes that neither the system can move
spontaneously down, nor can a constructive perturbation move the system up.
Whether the latter is true depends on the definition of “constructive perturbation”
applied. For the example in Figure 4 we defined a constructive perturbation as
inserting a small quantity of one new molecular species.

The dynamics in between organisations is more complex than this intuitive
presentation might suggest, for example in some cases it is possible to move from
one organisation O1 to an organisation O2, with O2 above (or below) O1 without
passing through the organisations in between O1 and O2.

5. ORGANISATIONS IN REAL SYSTEMS

Speroni et al.39 have shown that artificial chemical reaction networks that are based
on a structure-to-function mapping3, 20 possess a more complex lattice of organisa-
tion than networks created randomly. From this observation we can already expect
that natural networks possess non-trivial organisation structures. Investigation of
models of planetary photo-chemistries8, 42 and bacterial metabolism,7, 33 revealed
lattices of organisations that vanish when the networks are randomised, indicating
a non-trivial structure.

Here two brief examples from ongoing research7, 29 are presented. The first
example, studied by Matsumaru et al.,29 is a model of HIV-immune system dynamics
comprising four species. The simplicity of that model allows to validate the approach
analytically. The second example, taken from Ref.,7 is based on a model of the
central sugar metabolism of E.coli by Puchalka and Kierzek33 comprising 92 species.
It shows that non-trivial network complexity can be tackled and that sub-structures
in the model can be identified not known before.

5.1 Example: HIV-Immune System Dynamics

Wodarz and Nowak41 developed a model of immunological control of HIV in order
to explain the effect of various drug treatment strategies. Especially the model
shows, why a specific drug treatment strategy does not try to remove the virus, but
aims at stimulating the immune defence, such that the immune system controls the
virus at low but positive quantities.

In the model, there are four molecular species: ! = !x" y"w" z#: uninfected CD4+

T cells x, infected CD4+ T cells y, cytotoxic T Lymphocyte (CTL) precursors w,
and CTL effectors z. The concentration of each species is specified by x, y, w, and
z, respectively. The dynamics is given by an ordinary differential equation (ODE)
with kinetic parameters a"b" c"d"h"p"q"., and /:

ẋ = /−dx−.xy"

ẏ = .xy −ay −pyz"

ẇ = cxyw− cqyw−bw"

ż = cqyw−hz'

(22)
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From the given deterministic ODE model we derive chemical reaction rules, which
form a reaction network (Fig. 5, right top):

" = !

∅ →x"

x+ y →2y"

y+ z →z"

x+ y+w →x+ y+2w"

y+w →y+ z"

x →∅"

y →∅"

w →∅"

z →∅#'

The ODE model includes a decay term for each species. Therefore, for each species,
we have a reaction rule transforming that molecular species into the empty set:
x → ∅, y → ∅, w → ∅, and z → ∅. We observe in passing that in this particular
case, since all species decay, the system is a reactive flow system (Definition 3.5.2),
thus consistent (Lemma 4), and therefore the set of organisations must be a lattice
(Lemma 5), with one well defined largest and one well defined smallest organisation.

A graphical representation of the network is shown in Fig. 5, upper right corner.
The corresponding 4×9 stoichiometric matrix S reads:

S =
x
y
w
z

⎛

⎜⎜⎝

1 −1 0 0 0 −1 0 0 0
0 0 −1 0 0 1 −1 0 0
0 0 0 −1 0 0 0 1 −1
0 0 0 0 −1 0 0 0 1

⎞

⎟⎟⎠

where each row corresponds to a molecular species x, y, w, z (from the top) and
each column corresponds to a reaction. As mentioned previously, the stoichiometric
matrix does not contain all information of the reaction network. For example, the
reaction rule y+ z → z appears only as the column vector $0"−1" 0" 0&T .

5.1.1 Lattice of organisations

For applying the theory we check every possible set of species (i.e., 16 sets) whether
it is closed and self-maintaining. As a result three organisations are found. The
Hasse diagram is depicted in Figure 5, middle right. The smallest organisation
consists only of the “healthy cells” x (uninfected CD4+ T cells). There can not
be a smaller organisation (e.g., the empty set), because x is an input species and
therefore the empty set is not closed. Since x is an input species, the set !x# is
obviously self-maintaining. Looking at the reaction rules we can see that x alone
can not produce anything else, thus the set !x# is closed, too. Formally, we can
show that !x# is an organisation.

The second organisation, !x" y# contains “healthy cells” x together with “ill cells”
(infected CD4+ T cells). Looking at the reaction network, we can see that !x" y# is
closed, because there is no reaction rule that allows to produce w or z just using x
and y alone. With the flux vector v = $10" 1" 1" 0" 0" 1" 0" 0" 0&T we can show that,
according to Definition 5, !x" y# is self-maintaining, e.g., Sv = $8" 0" 0" 0&T .
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Figure 5. Illustration of the analysis of the HIV immunological response model by Wodarz and Nowak.41

The ODE model given in Eq. 22 is transformed to a chemical reaction network (right top). The resulting
hierarchy of organisations is shown as a Hasse diagram (right middle). Two of the organisations
represent the attractors: virus under control (top organisation) and immune system destruction (middle
organisation). Dynamic simulations28 leading to both attractors are shown on the left. Parameters were
taken from Ref.41 as follows: / = 1; d = 0'1; . = 0'5; a = 0'2; p = 1; c = 0'1; b = 0'01; q = 0'5; h = 0'1.
Initial concentrations for left, top plot: x = 0'74; y = 0'75; w = 0'018; z = 0'49. Initial concentrations
for left, bottom plot: x = 0'75; y = 0'14; w = 0'0095; z = 0'17. At the bottom, the full lattice of sets is
shown including closed and self-maintaining sets. See Matsumaru et al.29 for details. Figure reproduced
from Ref.10

The largest organisation contains all species and is thus obviously closed. Looking
at the reaction rules, we can see that since x can be produced at an arbitrarily high
rate, we can also produce y, z, and w at arbitrarily high rates, because we can freely
choose the flux vector v according to the definition of self-maintenence (Defini-
tion 5). Actually, the production rate Sv of all four species !x" y"w" z# can be posi-
tive, when we chose for example a flux vector like v = $100" 1" 1" 1" 50" 1" 50" 10&T .
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No further organisation exists, which implies according to Theorem 1
(Section 4.2) that there is no other combination of species that can form a stationary
state.

5.1.2 Connecting with dynamics and explaining a drug treatment strategy

From a mathematical analysis41 and simulation studies28 it is known that the model
has two modes of behaviour belonging to two asymptotically stable fixed points:
One of the attractors is characterised by high virus load and no CTL precursors
and effectors present. This state is interpreted as the complete destruction of the
immune defence. The organisation !x" y# represents this attractor. When the HIV
virus is controlled by the immune defence, all four molecular species are present
in the system, constituting the other attractor. This state is reflected in the largest
organisation !x" y"w" z#. The smallest organisation !x# can be interpreted as the
condition where no CD4+ T cell is infected by the HIV virus.

After identifying the lattice of organisations, we can use it to explain the strategy
of a drug therapy: Looking at the lattice of organisations, we can describe two
strategies for a drug therapy: The first one tries to move the system into the smallest
organisations !x#, where no virus is present at all. An alternative strategy may move
the system into the largest organisation, where the virus is present, but also an
immune system response controlling the virus.

There are drugs available that can bring down the virus load by several orders of
magnitude. If by this procedure the virus could be completely removed, the system
would move into the smallest organisation, because the set !x"w" z# generates3

organisation !x#. However, it has been observed that although the virus load can
be decreased below detection limit, the virus can not be fully removed so that the
virus appears again after stopping the treatment. Therefore, the actual strategy of
a drug therapy is not to move the system into the lowest organisation, but into the
highest organisation. In practice, this is achieved by applying the drug periodically
allowing the immune defence to increase.41

We can see that the strategy of a drug treatment can be explained on a relatively
high (i.e., less detailed) level of abstraction using the lattice of organisations, namely
as a movement from an organisation representing an ill state to an organisation
representing a healthy state. It is important to note that choosing the right level of
abstraction depends on what should be explained. The lattice of organisations is a
suitable level of abstraction for describing the overall strategy, i.e., the quality of a
drug treatment. However, how an actual drug treat should look like quantitatively
in order to move the system into the largest organisation can not be answered by
our theory. For this we have to chose a more detailed level of abstraction, e.g., the
ODE model, which provides information on how the system can move from one
organisation to another.

3 Note that we use the word “generate” as a precisely defined technical term (Eq. (16), Section 3.6.3).
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5.2 Example: Central Sugar Metabolism of E. Coli

In order to demonstrate that chemical organisation theory can reveal structures in
networks of non-trivial size, Centler et al.7 applied the theory to a large stochastic
network model of the central sugar metabolism of E. Coli as introduced by Puchalka
and Kierzek.33

The model consists of 92 species and 197 reactions, including gene expression,
signal transduction, transport, and enzymatic activities. The model was simpli-
fied by ignoring inhibitory links. By doing so we assume that an inhibition has
only a quantitative effect and does not shut off a reaction pathways completely
(cf. Section 2.4).

Two slightly different reaction networks can be studied depending on whether
we consider activators as necessary or not in the production of proteins.

When we consider activators to be necessary, a relatively complex lattice of
organisations appears as depicted in Figure 6. The smallest organisation, O1,
contains 76 molecules including the glucose metabolism and all input molecules.
The input molecules, chosen according to Ref.,33 include the external food set
(Glcex, Glyex, Lacex) and all promoters. Two other organisations, O3 and O4,
contain the Lactose and Glycerol metabolism, respectively. Their union results in
the largest organisation O5 that contains all molecules.

CrpmRNA  Crp

G3P  GlpDmRNA  GlpD  GlpFKmRNA1
GlpFKmRNA  GlpF  GlpK  Gly

Allo  Lac  LacZYmRNA1
LacZYmRNA LacZ LacY

Glcex Glyex Lacex Glc6P Glc 
Glk PromCya .... 
[76 species total]

organization O3

organization O5

organization O4

organization O2

organization O1

Figure 6. Lattice of organisations of a model of the central sugar metabolism of E.coli..33 In an
organisation, only names of new molecular species are printed that are not present in an organisation
below. The vertical position of an organisation correlates with the number of chemical species it contains.
Organisation O5 (top) is the largest one, containing all species from O4 and O3. Figure from Refs.7 and10
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LacEx

Lac

LacZ

LacXmRNA

Allo

Genome 
LacXProm

LacY

Figure 7. Illustration of the Mechanism leading to Organisation O3 in Figure 6. LacEx represents
external lactose, whereas Lac represents lactose inside the cell

In order illustrate the mechanism that leads to higher organisations, we take
a closer look at organisation O3, which includes the lactose uptake. Following
Puchalka and Kierzek,33 we assume that external lactose (LacEx) is alway present,
as well as the genetic information, including the promoter (LacXProm) to make
messenger RNA (LacXmRNA). This is considered by defining a fixed inflow
for those molecular species: ∅ → LacEx and ∅ → LacXProm. Figure 7 shows
the fraction of the reaction network, which explains, why, in the model, the
lactose uptake can not be generated from the input species: LacY is required for
lactose uptake, which is expressed by the reaction LacEx + LacY → LacY +
Lac. However, LacY cannot be generated given only the input species, such as
LacEx and LacXProm. Therefore, the closure of the input species does not include
molecules like LacY. If we add LacY to the input species, organisation O3 can be
generated.

If instead we consider the more precise version of the model, which does not
assume the necessary presence of activators for gene expression, we have a more
realistic model, yet a model that focuses at a longer timescale (as the base level
expression of a gene without the activator appears to be relatively slow). In this case
the resulting lattice collapses into a single huge organisation. In such case what the
theory suggests is a general stability of the system against various perturbations,
since no matter what kind of initial combination of molecular species we start off,
all other molecular species can be generated, given the input flux mentioned above
and sufficient time such that a gene depending on an activator can be expressed in
the absence of its activators.

6. DISCUSSION AND OUTLOOK

The theory of chemical organisation, as sketched here, creates a first, rough map of
the structure and potential dynamical behaviour of a reaction system. The obtained
scaffold (i.e., the set of organisations) can guide further more detailed analysis,
which may study the dynamics within or in-between organisations using classical
tools from dynamical systems theory. The results of more detailed studies can



390 DITTRICH AND SPERONI D.F.

in turn be explained and summarised with respect to the lattice of organisations
resulting in a global picture.

6.1 Related Work

There are a number of other approaches that operate purely on the reaction network’s
topology in order to infer potential dynamical properties.

Classical reaction network theory provides powerful theorems, which can predict
for a specific class of reaction networks whether a network possesses positive
stationary states or whether positive periodic solutions are possible. For example,
the deficiency-zero theorem states roughly that a weakly reversible mass-action
reaction system with deficiency zero contains one unique equilibrium point in
each positive reaction simplex.18 This line of research provides probably the
strongest mathematical results that link network structure to potential dynamics.
However, the research focuses on positive solutions, i.e., solutions where all
molecular species are present. Here, we are interested in states of the reaction
system where only a subset of species are present. Furthermore, our theory is
not restricted to systems with deficiency zero or one. We do not require for
our theorem that the reaction system is governed by mass-action kinetics; in
turn of course, chemical organisation theory can not predict the stability of an
organisation. Furthermore, we do not focus on stationary behaviour, but we aim
at understanding complex transitive dynamics, such as the movement between
organisations.

Another class of methods that operate on the network structure identifies so
called flux modes.23, 30 A flux mode is a set of reaction rules that can operate at
a steady state. Flux modes are similar to T-invariants, a concept from Petri net
theory.31 Obviously, flux modes can be linearly combined and thus form a complete
lattice (when we also consider the empty flux mode). A flux mode implies a set
of molecules, namely the set of molecules participating in the reactions of that
flux mode. Therefore, a flux mode is similar to the concept of self-maintenence.
However, the set of participating molecules is not necessarily self-maintaining nor
closed.26 And not all self-maintaining sets are represented by flux modes.26 For
example, a self-replicating molecule whose concentration growths for ever is self-
maintaining. But, since it does not reach a steady state, it is not captured by a flux
mode.

Boolean networks or logical networks are another approach to handle networks
without requiring detailed kinetics. A boolean network consists of a set of boolean
functions that take their own result of a previous time step as input. It is not yet
clear, how stationary states of a boolean network are related to organisations, which
is an interesting aspect for future investigations. Logical networks are a useful tool
to model signalling and gene regulatory networks.17 However, a boolean network
does not consider stoichiometry, which is essential in general reaction networks as
considered by our theory.
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6.2 Computational Complexity

This chapter describes the mathematical base of our theory and does not focus
on algorithmic issues. So far some preliminary algorithms are available. One of
them computes the set of organisations from the bottom up by starting from the
smallest organisation and then, recursively, adding molecules in order to generated
all the organisations above. With this algorithm we can currently analyse networks
containing up to 200 molecular species. For less than 30 species, a brute force
algorithm appears faster. The brute force algorithm simply tests every possible set
of molecules whether it is closed and self-maintaining.

6.3 Structure-to-Function Mapping

The aim of the theoretical framework introduced in this chapter is to deal with
constructive dynamical systems. However, the examples we presented for illus-
trating the new concepts where relatively simple: A set of molecules has always
been defined as a list of symbols. And also the reaction rules were given as an
explicit list. In other words, in these examples, all molecules that could appear were
already listed explicitly in the definition of the set of molecules.

When designing the presented theoretical framework we had already more
complex reaction systems in mind, namely those where the set of molecules and
reaction rules are defined implicitly. In these systems, molecules possess a structure,
that is, there is a grammar specifying their syntax, and reaction rules are defined
implicitly by referring to that structure. A simple example is the prime number
chemistry,2, 4 where the set of molecules are all natural numbers and the reaction
rules are defined by the numerical devision operator. More complex examples from
the field of artificial chemistry are AlChemy,19, 20 the combinator chemistry,37 or the
more realistic toy chemistry by Benkö et al..5 But also in biochemistry and systems
biology we observe a growing number of models where the reaction network is
defined implicitly, which usually leads to a combinatorial explosion in size. Exam-
ples are models of DNA assembly,21 DNA computing,1 or combinatorial signalling
networks.6, 32

Note that in our approach the set of molecules ! and the set of reactions "
of a reaction network can be defined implicitly. Furthermore, the dynamics that
we assumed in Section 4 is quite general, so that we can theoretically apply our
framework also to the systems mentioned above. However, computational tools
for an automatic analysis of implicitly defined reaction systems have yet to be
developed, which is a significant challenge for future research.
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